
2024 IL-IN Section Conference
University of Illinois Chicago | April 13, 2024

Less is More: Efficiently Fine-tuning Whisper for Educational Content

Christian Classen, University of Illinois Urbana-Champaign

Christian Classen is a student at UIUC. His primary research interest is machine learning.
He is interested in tackling problems in the intersection of AI and major social/ethical
issues. By understanding the capabilities and flaws of current ML technology, we can
ensure that emerging AI systems are used for the greater good while preventing harm.

© American Society for Engineering Education, 2024



Less is More: Efficiently Fine-tuning Whisper for
Educational Content

Abstract

Recent advancements in deep learning have improved the performance of automatic speech
recognition (ASR) technology. For educators, this has made the use of speech-to-text models
for automated captioning an attractive option to improve the accessibility of instructional
content. However, the accuracy of these models drops significantly when exposed to stut-
tering, accents, and technical language, limiting their effectiveness in realistic classroom or
lecture hall scenarios.

In this work, we analyze how effectively Open AI’s Whisper model can be adapted to a
specific lecturer and acoustic environment by fine-tuning on limited subsets of manually-
captioned lecture audio. Furthermore, we will discuss the implications of our results on the
potential for further refinement of existing speech transcription models.

Introduction

The development of neural network technologies has led to their rapid adoption by both
consumers and companies. While this has been most prominent for text-based language
models such as OpenAI’s ChatGPT, automatic speech recognition (ASR) systems have also
seen dramatic increases in performance by replacing traditional architectures with deep end-
to-end (E2E) models[1], [2]. These E2E models streamline the separate acoustic, lexicon,
and language models of traditional ASR systems into a single fully-neural model, making
them compact and easier to use [3], [4].

In the context of engineering education, existing work has created and evaluated sophisticated
web platforms that use automatic speech recognition for undergraduate engineering classes.
Examples include live captioning tool, ScribeAR [5], [6], and ClassTranscribe. The latter
utilizes automatic speech to text (and crowd-sourced editing) to provide accurate captions,
transcriptions ([7], [8]), and the ability to digital books in epub, pdf, and html format from
video content [9]. Thus, improving the accuracy of speech to text of engineering content will
have a direct and positive effect on the quality, accessibility, and inclusivity of engineering
education.



Although state of the art E2E models can reach accuracy rates of 95% or higher on standard
performance benchmarks [10]–[12], past research has demonstrated that the presence of
rare words, non-native speakers, and disfluencies (e.g., stuttering) can cause transcription
accuracy to drop [11], [13], [14]. This is particularly detrimental when trying to transcribe
educational content, as it requires accurate recognition of technical language to be effective.

The most common way to improve ASR accuracy in such situations is to use domain or
speaker adaptation techniques, namely fine-tuning a large pre-trained model with domain
or speaker-specific data [11]. However, since speaker-specific training data generally requires
audio to be manually transcribed, the practicality of obtaining a sufficiently large fine-tuning
dataset is uncertain. Therefore, to further the understanding of the viability of E2E model
adaptation for educators, we investigate the effects of fine-tuning a state of the art E2E
model with a limited, speaker-specific dataset. Specifically, we examine the effectiveness of
fine-tuning OpenAI’s Whisper model [15] using manually-transcribed lecture audio on the
scale of 5-10 hours.

Methods

Data collection and processing:

The audio and transcript data used in our first experiment was collected from lecture record-
ings of the CS 361 course at the University of Illinois at Urbana-Champaign (UIUC). Ma-
chine generated captions from ClassTranscribe were manually corrected to ensure accuracy.
In total, approximately 5.5 hours of audio data was collected.

To standardize the text data, transcriptions were processed to remove symbols, punctuation,
and capitalization. Audio data was segmented into 656 chunks, each roughly 30 seconds in
length. These chunks of audio, along with their corresponding transcripts, were randomly
assigned to training, validation, or test sets with probabilities of 70%, 15%, and 15% respec-
tively. The resulting dataset consisted of 452 chunks for training, 97 for testing, and 94 for
validation.

For the second experiment, we collected audio and transcripts from the University of Michi-
gan’s MICASE dataset [16]. In particular, we used approximately 4 hours of audio with
significant amounts of non-native English speech from native speakers of Chinese, Korean,
or Japanese. As in experiment 1, transcripts were processed to standardize text, with an
additional step to remove text enclosed in brackets or parenthesis, as those represent simul-
taneous speech or descriptions of sounds. After segmenting the audio into 522 roughly 30
second chunks, we used the same random assignment method to get 338 chunks for training,
103 chunks for testing, and 81 chunks for validation.



Finetuning and hyperparameters

We used the 8-bit version of the ADAM optimizer to fine-tune Whisper’s large model. Before
training, 500 steps of warm-up were performed to determine an appropriate learning rate.
In experiment 2, this was decreased to only 250 steps of warm-up. During fine-tuning, we
used a batch size of 1 for training and a batch size of 16 for validation. Both prompts and
timestamps were independently provided to the model for 50% of training batches. Gradient
accumulation was also performed, updating the model’s parameters every 64 steps, and
gradient clipping was used with a max norm of 1.0.

Fine-tuning was performed for 1000 steps in experiment 1 and 500 steps in experiment 2.
Every 250 steps, the current state of the model was saved, and its loss on the validation set
was computed. Overall, using an NVIDIA A100 SXM4 80GB GPU, fine-tuning took 6 hours
and 49 minutes for experiment 1 and 4 hours and 56 minutes for experiment 2.

Evaluation

To evaluate the performance of each version of the fine-tuned model on the testing set, we
compare their unweighted and weighted word error rates (WER) to that of Whisper’s large
model. Weighted WER gives 0.5 weight to insertion and deletion errors while giving 1.0
weight to substitution errors. Before calculating WER, transcripts were processed using
OpenAI’s Whisper normalizer [15] to prevent penalization for superficial differences.

Results

Model WER (Unweighted) WER (Weighted)
Whisper Large Model 0.230 0.149
250 Step Model 0.187 0.146
500 Step Model 0.183 0.155
750 Step Model 0.371 0.341
1000 Step Model 0.188 0.178

Figure 1: Weighted and Unweighted WER Calculated for Experiment 1

Model WER (Unweighted) WER (Weighted)
Whisper Large Model 0.292 0.239
250 Step Model 0.309 0.262
500 Step Model 0.353 0.316

Figure 2: Weighted and Unweighted WER Calculated for Experiment 2



Experiment 1

The weighted and unweighted WER of each of our model checkpoints are shown in 1%.
During fine-tuning, we reach the minimum weighted WER in the middle of the first epoch,
and reach the minimum unweighted error rate around its end. Despite the WER decreasing
relative to Whisper’s large model, the validation error, as shown in 3, consistently increased
as the number of fine-tuning steps increased.

Experiment 2

The WER in this experiment, as shown in 2, slightly increases in the first 250 steps of
fine-tuning before significantly worsening over the following 250 steps. This is likely an
issue with the MICASE dataset itself, which often alternates between several speakers and
contains many instances of overlapping speech. Even though these transcriptions are easy to
follow for a human, they contain non-standard tokens such as words cut off with a hyphen
to represent stuttering, which may be difficult for ASR models to understand.
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Figure 3: Validation Loss of the Model During Fine-tuning in Both Experi-
ments

Findings

The results of these experiments demonstrate Whisper’s ability to improve its performance
on a specific speaker with a small amount of training data. While experiment 2 suggests that
ASR models such as Whisper struggle to adapt to multi-speaker data, further investigation
of this case is required.



We also see a pattern of increasing validation error during fine-tuning, regardless of whether
the model’s accuracy increased or decreased. This suggests that validation error may be
too affected by minor discrepancies and stylistic differences to represent the effectiveness of
training.

Limitations

Although our work attempts to accurately assess the effectiveness of fine-tuning Whisper
efficiently on audio from a specific lecturer and acoustic environment, several factors limit
the scope of our results.

Our experiments were performed with a limited set of data. The first experiment required
several hours of educational content from the same speaker along with time-aligned tran-
scriptions, so we were limited to using transcriptions that were manually corrected. Our .
preventing us from performing our experiments with a large variety of different speakers and
environments.

Additionally, some level of error in our transcripts was caused by a lack of a consistency
when transcribing common disfluencies such as repeated phrases or blocking [17]. While we
did attempt to mitigate this by manually correcting the transcripts and cleaning the data,
it likely still negatively affected the reported performance of our fine-tuned model when
evaluated using WER.

Conclusion

In this work, we evaluated the Whisper model’s ability to improve its accuracy via limited
fine-tuning on a speaker’s voice. Although our results suggest that fine-tuning ASR models
with a highly limited dataset, even for a single epoch, can significantly improve accuracy for
speaker-specific transcription, it appears that more sophisticated methods of model adapta-
tion may be necessary to reach human level performance.
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